To follow this blog by email, give your address here...

Saturday, October 29, 2016

Symbiobility

I want to call attention here to a concept that seems to get insufficient attention: “symbiobility”, or amenability to symbiosis.

The word “symbiobility” appears to have been used quite infrequently, according to Google; but I haven’t found any alternative with the same meaning and more common usage.   The phrase “symbiotic performance” is more commonly used in biology and seems to mean about the same thing, but it’s not very concise or euphonious.

What I mean by symbiobility is: The ability to enter into symbiotic unions with other entities.

In evolutionary theory (and the theory of evolutionary computation) one talks sometimes about the “evolution of evolvability” – where “evolvability” means the ability to be improved via mutation and crossover.   Similarly, it is important to think about the evolution and symbiogenesis of symbiobility.

There are decent (though still a bit speculative) arguments that symbiogenesis has been a major driver of biological evolution on Earth, perhaps even as critical as mutation, crossover and selection.  Wikipedia gives a conservative review of the biology of symbiogenesis.  Schwemmler has outlined a much more sweeping perspective on the role of symbiogenesis, including a symbiogenesis-based analysis of the nature of cancer; I reviewed his book in 2002.

One can think about symbiobility fairly generally, on various levels of complex systems.   For instance,

  •  Carbon-based compounds often have a high degree of symbiobility – they can easily be fused with other compounds to form larger compounds.  
  • Happily married couples in which both partners are extraverts also have a high degree of symbiobility, in the sense that they can be relatively easily included in larger social groups (without dissolving but also without withdrawing into isolation).


These usages could be considered a bit metaphorical, but no more so than many uses of the term “evolution.”

One of the weaknesses of most Artificial Life research, I would suggest, is that the Alife formalisms created have inadequate symbiobility.   I have been thinking about this a fair bit lately due to musing about how to build an algorithmic-chemistry-type system in OpenCog (see my blog post on Cogistry).    A big challenge there is to design an algorithmic-chemical (“codelet”) formalism so that the emergent systems of codelets (“codenets”) will have a reasonably high degree of symbiobility.  

My hope with Cogistry is to achieve symbiobility via using very powerful and flexible methods (e.g. probabilistic logic) to figure out how to merge two entities A and B into a new entity symbiotically combining A and B.   This requires that A and B be composed in a way that enables the logic engine in use to draw conclusions about how to best compose A and B, based on a reasonablye amount of resource usage.

In terms of the Maximum Pattern Creation Principle I have written about recently, it seems that symbiogenesis is often a powerful way for a system to carry out high-speed high-volume pattern creation.   In ideal cases the symbiotic combination of A and B can carry out basically the same sorts of pattern creation that A and B can, plus new ones besides.


As the world gets more and more connected and complex, each of us acts more and more as a part of larger networks (culminating in the so-called “Global Brain”).   This means that symbiobility is a more and more important characteristic for all of us to cultivate – along with evolvability generally, which is a must in a world so rapidly and dramatically changing.

No comments: